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1. Conceptual Model of Diffusion


This section introduces the concept of molecular diffusion based on the 
random path of molecules. The theory and animation demonstrate how, 
through Brownian motion, a Gaussian distribution of molecules is 
obtained from a point release. The diffusion coefficient, D, is introduced 
as the coefficient in Fick's Law - which states that mass flux is directly 
proportional to, and in the opposite direction of, the concentration 
gradient. As noted by Fischer et al. (1979), several environmental 
dispersion problems can be described by processes that are strongly 
analogous to molecular diffusion, so it's an incredibly important concept! 
The example problems test one's knowledge of Fick's Law, the physical 
meaning of the diffusion coefficient, and the use of the Gaussian 
distribution to describe concentration profiles. 
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1. Conceptual Model for Diffusion 
Diffusion is defined as the net transport due to random motion. A model for diffusive 
flux can be constructed from the following simple example. Consider a one-dimensional 
system with motion in the X direction only. An interface B-B' separates two regions of 
different concentration, C1 and C2 = particles/volume on the left and right side of the 
interface, respectively. The motion of each particle is a one-dimensional random walk. 
In each time interval, ∆t, each particle will move a distance ± ∆X, moving right (+ ∆X) or 
left (- ∆X) with equal probability. 
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Within each time step, any particle within a distance ∆X of the interface B-B' has a 50% 
probability of crossing over that interface. The number of particles with the potential to 
cross B-B' from left to right (positive mass flux) is (C1 ∆X A), where A is the area of 
interface B-B'. On average half of these take a positive step and cross the interface in 
time ∆t, such that the flux left to right is (0.5 C1 ∆X A). Similarly, the number of 
particles crossing right to left in ∆t (negative mass flux) will be (0.5 C2 ∆X A). The 
resulting mass flux, qX, is 

0.5 ∆X A (C1 − C2)
(1)	 qx = . 

∆t 

If C(x) is continuous, then C2 ≈ C1 + ∆X ∂C/∂x, and (1) becomes 

 ∆X2  ∂C	 ∂C
(2) qx ≈ −  A = −D A = [mass / time]. 

 2 t∆  ∂x	 ∂x  

The coefficient of diffusion, D ~ (1/2)∆X2/∆t, has units of [length2 time-1]. The 
diffusivity of a chemical molecule in a given fluid depends on the ease with which the 
molecule can move, specifically, how far, ∆X, the molecule can move in a given time 



 

interval. The ease of molecular motion, and thus the diffusivity of a particular chemical, 
will depend on the molecule size and polarity, the type of fluid and the temperature. 

Equation (2) is a mathematical expression of Fick's Law. Fick's Law states that the 
flux of solute mass crossing a unit area, A, per unit time, ∆t, in a given direction, e.g. x, is 
proportional to the gradient of concentration in that direction, ∂C/∂x, and is counter-
gradient, i.e. the net flux is down-gradient. Because the flux in any direction is 
proportional only to the concentration gradient in that direction, Fick's Law can be 
directly extended to three-dimensions. 

∂C ∂C ∂C
(3) (qx,  qy,  qz = −DA  yz , − DA ,  − DA xy) (  xz ) .

∂x ∂y ∂z 

For molecular diffusion the coefficient for diffusion is isotropic, i.e. the same in all 
directions. This is not typically true for turbulent diffusion. 

Diffusion from a point source 
Consider a cloud of N particles (and total mass M) released at x = 0 and t = 0. Under the 
action of molecular diffusion, the cloud will slowly spread. We use the random walk 
model to predict the distribution of particle (mass) concentration, C(x,t). Note, that if we 
assume a unit mass per particle, we can conveniently interchange N = M. For simplicity 
we again consider a one-dimensional system, with the same rules of random motion 
described above, i.e. at each time step, ∆t, each particle will move either +∆X or -∆X 
with equal probability. Over time each particle will move a bit forward and a bit 
backward. The probable location of an individual particle after many such steps can be 
predicted with the Central Limit Theorem (see any basic statistics text). Specifically, in 
the limit of many steps, the probability that a particle will be located between m∆X and 
(m+1)∆X approaches a normal distribution with a zero mean and a standard deviation of 

(4) σ =  

where, as above, 

(5) D = (1/2)∆X2/∆t. 

The probability that a particle ends up between x and x+∆X is 

1  x2  1  x2 
(6) p(x, t) ∆X = exp −  ∆X = exp −  ∆X.

σ 2π  2σ2  4 Dt  π  2σ2 

Now consider the full cloud of N particles. At any time t, the number of particles 
between x and x+∆X is expected to be n(x,t) =  N p(x,t)∆X. Thus, the concentration, C, 
at position X is C(x,t) ≈ n(x,t)/(A ∆X), where A is the constant cross-section of the one-
dimensional system. Exchanging M for N, the concentration distribution, C(x,t), 

2Dt , 



 

  

M 2(7) C(x, t) = exp(−x /4Dt)=[mass / length3]
A 4 Dt  π 

As noted above, this distribution is the normal distribution with zero mean and standard 
deviation, σ =  2Dt , which should be familiar to you from any basic statistics course. 
Briefly, the distribution forms a bell-curve, as shown below. At any time, sixty-eight 
percent of the total mass (total number of particles) falls within ± σ of the mean position 
(x = 0). Ninety-five percent of the mass falls within ± 2σ of the mean position. And, 
99.7% falls within ± 3σ of the mean position. Based on these limits, it has become 
common to define the extent of a concentration patch based on the contour that includes 
ninety-five percent of the total mass, i.e. the contour at 2σ from the center. With this 
convention the length of a diffusing cloud, L, is often taken as L = 4σ. 
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It is also useful to note that the concentration level at one standard deviation from the 
cloud center is 61% of the maximum concentration, i.e. C (x = ± σ) = 0.61 Cmax, where 
Cmax is the concentration at the center of the cloud. This value provides a useful way to 
rapidly define the standard deviation of a particle (species) cloud. 



Example of Random Walk Process: See Animation 
This animation shows the motion of 500 particles in a one-dimensional random walk with 
step size ∆X = 1 in time ∆t = 1. At t = 0 the particles are located at 0. This random walk 
animation mimics the effect of Fickian Diffusion. As you watch the animation, consider 
the following. 

Graph of Absolute Particle Location (lower left window). 
This graph shows the number of particles located at each position of the x-axis. The 
number of particles per location is analogous to a concentration. 
1) Over time how does the peak particle number, N, (concentration, C) change under the 

influence of random particle motion (diffusion)? 
2) Over time how does the gradient in particle number (concentration), i.e. dN/dx 

(dC/dx) change under the influence of random particle motion (diffusion)? 
3) What is the sign of the particle number (concentration) gradient (dN/dx) for x > 0? 

Consider the animation of individual particle motion (uppermost window). For x > 0, 
is the net particle flux positive (to the right) or negative (to the left)? Is the direction 
of flux up-gradient of down-gradient? Is the relationship between the direction of 
flux and the concentration gradient consistent with Fick's Law (equation 3)? 

4) Estimate the diffusion coefficient, D, using equation (4) above, and the values of σ 
given in the upper left corner of this graph. You can pause the animation. How does 
the realized value of D compare with the theoretical value given in equation (5). Note 
that no specific units are given here, such that D will simply have unit L2T-1, where L 
is an arbitrary length unit and T is the arbitrary time unit. 

Graph of Particle Location in Terms of σσσσ. 
This graph plots the distribution of particle location with the position normalized by the 
standard deviation, σ. The solid curve is the Gaussian distribution. 
5) Note that at early time (first few time steps) the real distribution of particles does not 

approximate a Gaussian distribution very well. This is because the Gaussian 
distribution is only valid after a sufficient number of steps (Central Limit Theorem). 
Use the animation to estimate how many steps are required for the distribution to 
consistently fit the Gaussian distribution. 

Key Aspects of Diffusion 
(1) Diffusion is the net flux due to random motion. 
(2) Diffusive flux is proportional but opposite in sign to the gradient of concentration. 
(3) Diffusion acts to dilute concentration and reduce gradients of concentration. 

http://web.mit.edu/afs/athena/course/1/1.061/www/dream/ONE/WALK2.AVI



